Soil Microbial Responses to Elevated CO2 and O3 in a Nitrogen-Aggrading Agroecosystem

نویسندگان

  • Lei Cheng
  • Fitzgerald L. Booker
  • Kent O. Burkey
  • Cong Tu
  • H. David Shew
  • Thomas W. Rufty
  • Edwin L. Fiscus
  • Jared L. Deforest
  • Shuijin Hu
چکیده

Climate change factors such as elevated atmospheric carbon dioxide (CO₂) and ozone (O₃) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO₂- or O₃-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO₂ and O₃ in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO₂ but not O₃ had a potent influence on soil microbes. Elevated CO₂(1.5×ambient) significantly increased, while O₃ (1.4×ambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO₂ significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO₂ largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO₂-stimulation of symbiotic N₂ fixation in soybean. Fungal biomass and the fungi∶bacteria ratio decreased under both ambient and elevated CO₂ by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO₂. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO₂ scenarios.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Elevated CO2, O3, and UV Radiation on Soils

In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory e...

متن کامل

Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem

Atmospheric CO2 concentration is continuously increasing, and previous studies have shown that elevated CO2 (eCO2) significantly impacts C3 plants and their soil microbial communities. However, little is known about effects of eCO2 on the compositional and functional structure, and metabolic potential of soil microbial communities under C4 plants. Here we showed that a C4 maize agroecosystem ex...

متن کامل

Extracellular Enzyme Activity Beneath Temperate Trees Growing Under Elevated Carbon Dioxide and Ozone

cause these plant tissues are the primary substrates for microbial metabolism in soil. Soil microorganisms are limited by the amount and type of plantOzone is a greenhouse gas that is accumulating in the derived substrates entering soil, and we reasoned that changes in the production and biochemical constituents of plant litter produced lower atmosphere, and elevated O3 has the potential to und...

متن کامل

Global Change Ecology

Atmospheric CO2 and O3 concentrations are increasing due to human activity and both trace gases have the potential to alter C cycling in forest ecosystems. Because soil microorganisms depend on plant litter as a source of energy for metabolism, changes in the amount or the biochemistry of plant litter produced under elevated CO2 and O3 could alter microbial community function and composition. P...

متن کامل

Concentration of sugars, phenolic acids, and amino acids in forest soils exposed to elevated atmospheric CO2 and O3

Concentrations of soluble soil sugars, soluble phenolic acids, and free amino acids were measured in three forest communities at the FACTS-II Aspen FACE Site near Rhinelander, WI, in order to better understand how elevated atmospheric CO2 and O3 are influencing soil nutrient availability and cycling. Sugars, phenolic acids, and amino acids are mostly derived from plant and microbial processes, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011